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Abstract. The Euclidean distance matrix (EDM) completion problem and the positive semidefi-
nite (PSD) matrix completion problem are considered in this paper. Approaches to determine the
location of a point in a linear manifold are studied, which are based on a referential coordinate set
and a distance vector whose components indicate the distances from the point to other points in
the set. For a given referential coordinate set and a corresponding distance vector, sufficient and
necessary conditions are presented for the existence of such a point that the distance vector can be
realized. The location of the point (if it exists) given by the approaches in a linear manifold is
independent of the coordinate system, and is only related to the referential coordinate set and the
corresponding distance vector. An interesting phenomenon about the complexity of the EDM
completion problem is described. Some properties about the uniqueness and the rigidity of the
conformation for solutions to the EDM and PSD completion problems are presented.
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1. Introduction
n3nA matrix D 5 (d )[R is called a Euclidean distance matrix if there existij

kvectors x , . . . , x [R (for some k > 1) such that ix 2 x i5 d for all i, j [N 51 n i j ij
kh1, . . . , nj, where i?i denotes the Euclidean norm in R . The set of the vectors

X 5 hx u i [Nj is called a realization of the Euclidean distance matrix D. In otheri

words, a realization X of the Euclidean distance matrix D can be regarded as an
embedding of a set with n atoms (Denote this set by A5 ha u i [Nj for simplicity)i

kinto the Euclidean space R (for some k > 1) such that the Euclidean distance
matrix of X is equal to D. Let EDM denote the set of all Euclidean distancen

n3nmatrices in R . The Euclidean distance geometry problems are referred to as
follows:
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The basic Euclidean distance geometry problem:
n3nGiven a matrix D [R , is it a Euclidean distance matrix, i.e., D [EDM ?n

The general Euclidean distance geometry problem:
Given an index set I , h(i, j) u i, j 5 1, . . . , nj and two real sets hl u (i, j)[ Ijij

and hu u (i, j)[ Ij, is there a Euclidean distance matrix D [EDM such that,ij n

for any (i, j)[ I, l < d < u ?ij ij ij

In the fields of bio-informatics and computational chemistry, many research subjects
about protein structures and macro-molecular modeling are related to the reconstruc-
tion of a three-dimensional set of atoms by using information about their inter-
atomic distances, where atoms may be regarded as points from the viewpoint of
mathematics [3, 6]. The distances usually can be obtained via X-ray crystallography
or nuclear magnetic resonance (NMR) spectroscopy and analyzed by distance
geometry methods [7, 11]. Hence, this kind of reconstruction problem is called the
molecular problem [11] or the Euclidean distance geometry (EDG) problem [7]. In
addition, the multidimensional scaling problem, arising in statistics in order to deal
with the similarity /dissimilarity among some objects, is related to a certain kind of
the EDG problem [5]. Some matrix completion problems, which have received a lot
of attention in the literature in recent years within the community of linear algebra,
are also related to the EDG problem [2, 13, 16].

Since NMR experiments afford broad ranges of possible distances only for some
atom pairs, the NMR data often have the following two features: (i) The distances
obtained are not absolutely exact and have errors; (ii) Only a sparse distance matrix
is available. For those pairs whose distances are not given, the lower bounds will
simply be determined by the Van der Waals radii, and the upper bounds by a typical
extended ranges for the related molecule. In order to deal with NMR data, people
have proposed many algorithms for the EDG problems, such as the EMBED
algorithm [7], the spectral gradient algorithm [9], the graph reduction algorithm
[11, 12], the global continuation algorithm [17], the tabu-based pattern search
method [18] and the spectral distance geometry algorithm [21]. For the molecular
distance geometry problem with exact inter-atomic distances, a linear time algorithm
can be found in Ref. [8]. Based on a new error function defined by the sum of the
absolute difference, distance geometry problem can be reduced into a concave
quadratic minimization problem, for which positive semidefinite relaxations are
possible [22].

In this paper, we will study a special class of Euclidean distance geometry
problems in a linear manifold, whose corresponding distance matrix has some
entries specified exactly, while others may not be specified. The importance of this
special class of the EDM problems is that its solution usually can be used as an
iteratively approximated solution to the general EDM problem and is also related
closely to the positive semidefinite matrix completion problem.

2For a given set X, a mapping d : X →R is said to be premetric on X if the
mapping d satisfies the conditions:
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(i) d(u, v)5 d(v, u), ;u, v [X;
(ii) d(u, v)5 0 if and only if u 5 v, ;u, v [X.

In this case, a pair (X, d) is called a premetric space. When X is a finite set, denote
its elements by hx , . . . , x j, the n 3 n matrix D 5 (d(x , x )) is called a premetric1 n i j

matrix. Furthermore, if the mapping d also satisfies the condition:

(iii) d(u, v)> 0, ;u, v [X,

then d is said to be a semimetric on X. The pair (X, d) and the corresponding matrix
D are called a semimetric space and a semimetric matrix, respectively. If the
mapping d satisfies (i)–(iii) and the condition:

(iv) d(u, v)< d(u, w)1 d(w, v), ;u, v, w [X,

then d is said to be a metric on X. The pair (X, d) and the corresponding matrix D
are called a metric space and a metric matrix, respectively [4, 7].

mGiven any set of points A and an embedding function p : A →R , then, the
embedding p of the set A will induce an m-dimensional Euclidean distance function

:d (u, v) 5 ip(u)2 p(v)i, where u, v [ A and i?i is the Euclidean norm on the vectorp
mspace R , such that (A, d ) becomes a Euclidean distance space associated with thep

m mset A. In particular, (R , d ) (denoted by R for simplicity) is a special m-p

dimensional Euclidean distance space.
A necessary condition for D [EDM is that D must be also a premetric,n

semimetric and metric matrix. It is clear that there exist many realizations for a
given Euclidean distance matrix D. A translation, rotation or reflection of a
realization X of the matrix D [EDM gives another realization Y of the matrix D,n

but we will show that the conformation (i.e., the spatial structure related to points in
a realization) of these realizations remains the same. A realization X of the matrix
D [EDM is said to be congruent to another realization Y if X can be obtainedn

from Y by a rigid motion (i.e., by a translation, a rotation or a reflection), or a
composition of some rigid motions. Denote two congruent realizations X and Y (i.e.,
two congruent embeddings of the Euclidean distance space (A, D)) by X |Y.

n3nA partial symmetric matrix P [R is a matrix whose entries are specified only
on a subset of the positions, but in such a way that p is specified and equal to pji ij

whenever p is specified. The matrix completion problem is referred to as follows:ij
n3nGiven a partial matrix P [R , can the unspecified entries of P be chosen such

that the resulting matrix satisfies a certain property? The Euclidean distance matrix
completion problem (EDM completion problem, for short) asks whether a given
partial symmetric matrix can be completed to a Euclidean distance matrix. The
positive semidefinite matrix completion problem (PSD completion problem, for
short) asks whether a given partial symmetric matrix can be completed to a positive
semidefinite matrix. Many results have been obtained for these two completion
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problems, which are based on certain graphic structures corresponding to the
specified entries (see [14–16] and references therein). But no efficient algorithm is
known for deciding whether or not a given partial EDM or PSD matrix can be
completed.

A set of points X(D)5 hx u i [Nj is said to be a realization of a given partiali

Euclidean distance matrix D if it is a realization of the completed Euclidean distance
matrix of D. Similarly, a realization X(D) of the matrix D is said to be congruent to
another realization Y(D) if X(D) can be obtained from Y(D) by a rigid motion or a
composition of some rigid motions. All congruent realizations of the matrix D
constitute an equivalence class of point sets.

It is clear that, for the EDM completion problem, one may consider only partial
matrices whose diagonal entries are all specified and equal to 0. For the PSD
completion problem, one can restrict it to the case of partial matrices whose
diagonal entries are all specified and equal to 1. The positive semidefinite matrix,
whose diagonal entries equal to 1, is known as the correlation matrix. Let PSDn

n3ndenote the set of all positive semidefinite matrices in R . Denote the set of all
n3ncorrelation matrices in R by

F 5PSD > hP 5 ( p ) u p 5 1, ;i [Nj .n n ij ii

The paper is organized as follows: In Section 2, the connection between the EDM
and PSD completion problems are considered. In Section 3, approaches to determine
the location of a point in a linear manifold are studied, which use the distances from
the point to the ones in a referential coordinate set. For a distance vector associated
with a referential coordinate set, the sufficient and necessary conditions for the
existence of such a point that the distance vector can be realized, are also presented.
In Section 4, an interesting phenomenon about the complexity of the EDM
completion problem will be described, and properties about the unique conformation
and the rigid conformations of solutions to the EDM and PSD completion problems
are obtained. Some concluding remarks are given in the final section.

2. Connections between the EDM and PSD completion problems

Let G 5 (V , E) be a graph with a node set V 5 h1, . . . , nj and an edge set E. Let Kn n n

denote the complete graph with n nodes. Let F(G) and EDM(G) denote the
Eprojections of F and EDM on the subspace R indexed by the edge set of G,n n

respectively. In particular, the sets F(K ) and F are in one-to-one correspondence,n n

as well as the sets EDM(K ) and EDM . Let PSG(G) denote the projections of PSDn n n
E<h(i,i )ui[V jnon the subspace R indexed by the union of the edge set of G and the set

h(i, i) u i [V j. For the simplicity, let E95E < h(i, i) u i [V j.n n

The suspension graph =G is defined as the graph with the node set V 5V <n11 n

hn 1 1j and with the edge set E(=G)5E < h(i, n 1 1) u i [V j. Given a subsetn

U #V , let G[U ] denote the subgraph of G induced by U, with the node set U andn
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with the edge set h(u, v)[E u u, v [U j. U is called a clique if G[U ] is a complete
graph.

For the graph G and its suspension graph =G, let a one-to-one linear corre-
E(=G ) E 9spondence j between the space R and R , which is called covariance

mapping, be defined in the following manner:
E(=G ) E 9For D [R , P 5j(D)5 ( p )[R such thatij

1 2 2 2]p 5 (d 1 d 2 d ) (i, j)[E9 . (1)ij i,n11 j,n11 ij2

For a partial symmetric matrix D [EDM(=G), without loss of generality, denote a
mrealization of the completed matrix of the matrix D in R by hx u i 5 1, 2, . . . , n 1i

1j, it is easy to check that the completed matrix of the corresponding partial matrix
T m3nP is equal to X X, where the matrix X 5 (x 2 x , . . . , x 2 x )[R . This1 n11 n n11

indicates that P [PSD(G). In fact, the following assertion holds:

D [EDM(=G)⇔P 5j(D)[PSD(G) (2)

The well-known correspondence between EDM and PSD was proved byn11 n

Schoenberg [20] as follows:

D [EDM ⇔P 5j(D)[PSD . (3)n11 n

The function F : t → exp(2lt), where t, l[R 5 hx : x [R, x > 0j, is calledl 1

the Schoenberg transform. A connection beween EDM and F can be found inn n

[16, 20].

n3nLEMMA 2.1 [16, 20]. Let D [R be a symmetric matrix with an all-zero
diagonal. The following assertions are equivalent:

(i) D [EDM .n
2(ii) The matrix (F (d ))[F for all l. 0.l ij n

2 1 / 2(iii) The matrix ((12F (d )) )[EDM for all l. 0.l ij n

The result has been extended to the EDM and PSD completion cases as follows:

ELEMMA 2.2 [15, 16]. Let G 5 (V , E) be a graph and let the matrix D [R . Then

following assertions are equivalent:
(i) D [EDM(G).

2(ii) The matrix (F (d ))[F(G) for all l. 0.l ij
2 1 / 2(iii) The matrix ((12F (d )) )[EDM(G) for all l. 0.l ij

By the formulae (1)–(3), Lemma 2.1 and Lemma 2.2, we know that the PSD
completion problem is related closely to the EDM completion problem. Therefore,
we will pay more attention to the EDM completion problem in the following
sections. Based on the results for the EDM completion problem, it is easy to derive
the corresponding results for the PSD completion problem.
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3. Basic approaches for determing the location of a point

From properties of linear dependent and linear independent sets [1], we can obtain
easily the following Lemma 3.1.

mLEMMA 3.1. Given a set of points X 5 hx u i 5 0, 1, . . . , kj,R . Let S 5i X
mho l x u o l 5 1, x [X, l [R, i 5 0, . . . , kj be a linear manifold in Ri i i i i i i

generated by the set X. Then the following assertions are equivalent for the set X:

(i) The dimension dim(S ) of the linear manifold S is k.X X

(ii) The m 3 k matrix A 5 (x 2 x , . . . , x 2 x ) is of full rank of columns.0 1 0 k 0

mDEFINITION 3.1. A finite set X ,R is referred to as a referential coordinate set
if the dimension dim(S ) of its corresponding linear manifold S is equal to uXu2 1.X X

For a referential coordinate set X, it can be proved easily that the linear manifold SX
mis equal to x 1 spanhx 2 x , . . . , x 2 x j in the m-dimensional space R . Now,0 1 0 k 0

we give a lemma, which is fundamental to determine the location of a point in a
linear manifold corresponding to a given referential coordinate set and a distance
vector whose components indicate the distances from the point to those in the set.

LEMMA 3.2. Let the index set I 5 h0, 1, . . . , kj. Given a referential coordinate setk
m mX 5 hx u i [ I j,R , and a vector y [R , consider the problemi k

2min iy 2 xi , (4)
x[SX

where S is the linear manifold generated by the set X. Then, the following twoX

conclusions hold:

(i) There exists a unique solution x*[ S to the problem (4):X

(ii) For any integer i [ I , denote the matrix A 5 (x 2 x u j [ I , j ± i), thek i j i k

solution to the problem (4) can be represented as follows:

x*5 (I 2P )x 1P y , (5)A Ai i

m3mwhere I is the identity matrix in R , x is an arbitrary point in S , andX
T 21 TP 5 A (A A ) A is the projective operator onto the subspace spanned byA i i i ii

the columns of A .i

Proof. (i) It is clear that the objective function in problem (4) is strict convex.
2Since the objective function is also a coercive function (i.e., iy 2 xi → 1` as

ixi→1`), and the constrained domain S is a nonempty convex set, the solutionX

x*[ S to problem (4) exists and is unique.X

(ii) For any integer i [ I , let the matrix A be defined as above and S be thek i i

subspace spanned by the columns of A . Since X is a referential coordinate set, byi
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Lemma 3.1 and properties of linear independent sets, the dimension of he linear
manifold S is k and S is the same as the subspace S spanned by the columns of A ,X i j j

where j [ I , j ± i. Denote the same subspace by S in the following consideration.k 0

First, we show that the operator P is independent of the matrix A . LetA ii

hu , u , . . . , u j be any basis of the subspace S and denote the matrix U 51 2 k 0
k3k(u , . . . , u ). There must exist a nonsingular transition matrix Q [R from1 k

'A -coordinates to U-coordinates such that A 5UQ [1]. Denote S to be thei i 0

orthogonal complementary subspace of S . Since0

T 21 T T 21 TP 5 A (A A ) A 5U(U U ) U 5P .A i i i i Ui

'holds, the projective operators P and I 2P onto the subspaces S and S ,A A 0 0i i

respectively, are independent of the special basis hx 2 x u j [ I , j ± ij of thej i k

subspace S . Hence, for the given set X and the vector y, P y is not dependent with0 A i

the matrix A .i
Next, we prove that (5) holds for any x [ S . It is easy to check thatX

(I 2P )(x 2 x ); 0 .A j ii

Using the fact S 5 x 1 S , for any x [ S , we have (I 2P )x 5 (I 2P )x . Hence,X i 0 X A A ii i

(I 2P )x is a constant vector in the linear manifold S . Furthermore, the vectorA Xi

x̂ 5 (I 2P )x 1P yA Ai i

ˆis independent of any vector x [ S . It is clear that x [ S and is independent withX X

the matrix A , i [ I . Sincei k

2 2 2ˆix 2 yi 5 i(I 2P )(x 2 y)i < ix 2 yi , ;x [ S ,A Xi

ˆholds and the solution x* of problem (4) is unique, we have x*5 x. h

mTHEOREM 3.1. Given a referential coordinate set X 5 hx u i 5 0, 1, . . . , kj,Ri
k11 k11and a nonnegative vector d [R 5 hx [R u x > 0j. Let S be the linear1 X

manifold corresponding to X. Then, one and only one of the following cases holds:

(i) There exists a unique point x*[ S such that, for any point x [X, theX i

Euclidean distance between x* and x is equal to d , i.e., ix*2 x i5 d ;i i i i

(ii) For any point x [ S , there exists a certain x [X such that ix 2 x i± d .X i i i

mProof. Let us consider the following equations with respect to y [R

iy 2 x i5 d , i 5 0, 1, . . . , k , (6)i i

which are equivalent to
2 2 T 2 2iy 2 x i 5 iyi 2 2x y 1 ix i 5 d , i 5 0, 1, . . . , k .i i i i

Subtracting the equation corresponding to i 5 0 from the rest, we obtain
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T 2 2 2 2
22(x 2 x ) y 5 d 2 d 1 ix i 2 ix i , i 5 1, . . . , k .i 0 i 0 0 i

These linear equations with respect to y are equivalent to the following equation in
matrix form

TA y 5 b , (7)
2 2 2 2where A5 (x 2 x , . . . , x 2 x ), and b 5 (d 2 d 2 ix i 1 ix i ) /2 for i 51 0 k 0 i 0 i 0 i

1, . . . , k.
Since X is a referential coordinate set, the matrix A is of full rank of columns.

T mHence, A A is a symmetric positive definite matrix. For any y [R , by Lemma 3.2,
the linear system (7) has a solution

T 21x*5 (I 2P )x 1 A(A A) b , (8)A 0

T 21 Tsuch that iy 2 x*i5min iy 2 xi, where P 5 A(A A) A . It is easy to see thatx[SX

the equations (6) are equivalent to iy 2 x i5 d and the linear system (7). It is clear0 0
m 2 2 2 2that, if y [R satisfies the linear system (7), then iy 2 x i 2 d 5 iy 2 x i 2 di i 0 0

(i 5 1, . . . , k). Therefore, case (i) holds if and only if x*[ S satisfies ix*2 x i5X 0

d .0

We have mentioned that x* satisfies the system (7) and x*[ S . If case (i) doesX

not hold, then ix*2 x i± d . Since the linear manifold S 5 x 1 S , any point0 0 X 0 0
kx [ S can be represented as x 1 Al, where l[R . If ix 2 x i± d , then case (ii)X 0 0 0

holds. Otherwise, we claim that there must exist a j > 1 such that ix 2 x i± d . Ifj j

ix 2 x i5 d , ; j > 1, then these formulae together with ix 2 x i5 d will imply thatj j 0 0
Tx is a solution of the linear system (7), i.e., A x 5 b. By Lemma 3.2, we have

T 21x*5 (I 2P )x 1 A(A A) bA

T 21 T
5 x 2 A(A A) (A x 2 b)

5 x .

Hence, ix 2 x i5 ix*2 x i± d . This is a contradiction to the assumption ix 20 0 0

x i5 d . Therefore, when the case (i) does not hold, the case (ii) must hold. h0 0

Note that the linear system (7) has a unique solution in the linear manifold S .X

THEOREM 3.2. Let the index set I 5 h0, 1, . . . , kj. Given a referential coordinatek
mset X 5 hx u i [ I j,R , denote D to be the Euclidean distance matrix associatedi k

mwith X. Then, for any realization Y of the matrix D in R , Y is congruent to X, i.e.,
the conformation corresponding to the matrix D is unique.

(1)Proof. We prove this theorem by induction. For two two-point sets X 5 hx , x j0 1
(1)and Y 5 hy , y j, if the distance between x and x is equal to that between y and0 1 0 1 0

(1) (1)y , then it is clear that X is congruent to Y by a translation, or a rotation, or a1

composition of a translation and a rotation. Hence, the conclusion holds for k 5 1.
(2)For k 5 2, given a three-point referential coordinate set X 5 hx , x , x j, let0 1 2
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(2) (2)Y 5 hy , y , y j be any realization of the Euclidean distance matrix D associ-0 1 2
(2)ated with X . By the knowledge of Euclidean geometry, we know that the two

(2) (2)triangles generated by the points in X and Y , respectively, are congruent, i.e.,
(2) (2)Y |X . Hence, the conclusion also holds for k 5 2.

(n11)Suppose that the conclusion holds for k 5 n. For k 5 n 1 1, let X be a given
(n11)referential coordinate set and D be the corresponding Euclidean distance

(n11) (n11)matrix. Suppose that Y is any realization of the matrix D . Next, we will
(n11) (n11)show that Y |X .

(n11) (n11)Without loss of generality, suppose that the indices of points in X and Y
(n11)are consistent with the column indices of the matrix D , i.e., the distance

(n11) (n11) (n11) (n11) (n11)between x and x (between y and y ) is equal to d , wherei j i j i11, j11
(n11):i, j 5 0, 1, . . . , n 1 1. Denote D 5 (d ) to be the upper left (n 1 1)30 ij i, j<n11

(n11)(n 1 1) submatrix of D .
(n11) (n11): :Since X 5 hx u 0< i < nj and Y 5 hy u 0< i < nj are two realizations0 i 0 i

of the Euclidean distance matrix D and the former is also a referential coordinate0

set, by the induction hypothesis, we get that Y |X .0 0

Let x* and y* be solutions to problems:

(n11) (n11)min ix 2 xi and min iy 2 xi ,n11 n11
x[S x[SX Y0 0

respectively. From the proof of Theorem 3.1, it is clear that x* and y* are also the
solutions to the linear system (7) in the linear manifolds S and S with respect toX Y0 0(n11)the distances hd u i 5 1, . . . , n 1 1j, and the referential coordinate sets X and Y ,i,n12 0 0

respectively. By Lemma 3.2 and Y |X , we know that the location of y* with0 0

respect to Y is similar to that of x* with respect to X . Hence, Y < hy*j|X < hx*j.0 0 0 0
(n11) (n11)In particular, for i 5 0, 1, . . . , n, ix 2 x*i5 iy 2 y*i.i i

(n11) (n11)Furthermore, x 2 x* and y 2 y* are perpendicular to linear manifoldsn11 n11

S and S , respectively. For i 5 0, 1, . . . , n, we haveX Y0 0

(n11) 2 (n11) (n11) 2(d ) 5 ix 2 x ii11,n12 n11 i

(n11) 2 (n11) 2
5 ix 2 x*i 1 ix 2 x*i ,n11 i

and

(n11) 2 (n11) (n11) 2(d ) 5 iy 2 y ii11,n12 n11 i

(n11) 2 (n11) 2
5 iy 2 y*i 1 iy 2 y*i .n11 i

(n11) (n11) (n11) (n11)Hence, ix 2 x*i5 iy 2 y*i. This indicates X < hx*j|Y < hy*j,n11 n11
(n11) (n11)which implies X |Y . Therefore, the conclusion still holds for k 5 n 1 1. h

THEOREM 3.3. Let the index set I 5 h0, 1, . . . , kj. Given a referential coordinatek
m k11 k11set X 5 hx u i [ I j,R and a nonnegative vector d [R 5 hx [R u x > 0j,i k 1

denote the Euclidean distance matrix associated with X by D and the matrix0
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D d0D 5 [ ]. In the linear manifold S , let x* be the unique solution to the linearT 0 Xd

system (7). Then, the following conclusions hold:
(i) There exists a constant c such that

2 2d 2 ix*2 x i 5 c , ;i [ I ;i i k

(ii) The matrix D is a Euclidean distance matrix if and only if the constant c > 0. In
particular, when k ,m, c > 0, or k 5m, c 5 0, there exists a realization of the

mEuclidean distance matrix D in R ; when k 5m, c . 0, there exists a
m11realization in R .

Proof. (i) From the proof of Theorem 3.1, it is clear that the linear system (7) is
equivalent to the following equations:

2 2 2 2iy 2 x i 2 d 5 iy 2 x i 2 d , i 5 1, 2, . . . , k .i i 0 0

Since x*[ S is the solution of the linear system (7), we know that the conclusionX
2 2(i) holds for the constant c 5 d 2 ix*2 x i .0 0

(ii) (⇐) If c 5 0, then, for any k <m, it is easy to see ix*2 x i5 d , i [ I . Ini i k

this case, the matrix D is a Euclidean distance matrix and X < hx*j is a realization of
the matrix D.

If c . 0 and k ,m, then the dimension of the linear manifold S 5 x 1 S (whereX 0 0
'S 5 spanhx 2 x , . . . , x 2 x j) is less than m, and the complementary subspace S0 1 0 k 0 0

'˜ ˜of S contains nonzero points. For any nonzero point x [ S , x*1 x is also a0 0

solution of the equation (7). For i [ I , by the conclusion (i) and x*2 x [ S , wek i 0

have
2 2 2 2 2˜ ˜ix*1 x 2 x i 2 d 5 ix i 1 ix*2 x i 2 di i i i

2˜5 ix i 2 c .

˜This indicates that the matrix D is a Euclidean distance matrix, and X < hx*1 x j
' 2˜ ˜becomes a realization of the matrix D if we choose x [ S such that ix i 5 c.0

m11xiˆIf k 5m and c . 0, then, ;i [ I , let the vector x 5 [ ][R . In this case, we0k i

consider a problem similar to the second case above, but in the (m 1 1)-dimensional
m m11space. Note that S 5R and it can be embedded into the space R . Denote theX

m11x*ˆpoint x 5 [ ][R . By the conclusion (i), ;i [ I , the Euclidean distancel k

ˆ ˆbetween x and x is equal toi

2 2ˆ ˆix 2 x i5 ix*2 x i 1li i

2 2
5 d 2 c 1l .i

m11ˆ ˆObviously, the matrix D is a Euclidean distance matrix, and hx, x [R u i [ I ji k
1 / 2becomes a realization of the matrix D if we choose l5 c .

(⇒) If the matrix D is a Euclidean distance matrix, then there exists a realization
of the matrix D, denoted by hv u i 5 0, 1, . . . , k 1 1j, such that iv 2 v i5D .i i j i11, j11

mSince k <m, without loss of generality, suppose that V5 hv u i [ I j,R is ai k



SOME PROPERTIES FOR THE EUCLIDEAN DISTANCE MATRIX 13

m11realization of the principal sub-matrix D of the matrix D (If v [R , we0 i

consider them in the m-dimensional linear manifold associated with V ). Since X and
V are two realizations of the matrix D , by Theorem 3.2, we know that the set V is0

also a referential coordinate set and V|X. Hence, the linear manifold S isX

isomorphic with the linear manifold S . Similar to the discussion in the proof ofV

Theorem 3.2, we have

2 2 2 2d 2 ix*2 x i 5 d 2 iv*2 v ii i i i

2
5 iv 2 v*i , i [ I ,k11 k

where v*[ S is the solution to the problemV

min iv 2 vi .k11v[SV

2This indicates that c 5 iv 2 v*i > 0. hk11

4. Complexity, unique and rigid conformations

4.1. THE COMPLEXITY OF THE EDM COMPLETION PROBLEM

Saxe [19] had prove that, embeddability of weighted graphs in k-space is strongly
NP-hard. Based on this result, it is well known that, the EDM completion problem

min the space R is strongly NP-complete, and it is strongly NP-hard in R for m . 1.
An interesting phenomenon is described below:

The instances [7, 11], which were used to prove the complexity of the EDM
m m11completion problem in R , can be solved easily in R , where m > 1.

We will demonstrate this interesting phenomenon for m 5 1, and the similar idea can
be extended to the instances used in Refs. [7, 11] for m . 1. First, we give a proof of
the complexity of the EDM completion problem for m 5 1. The idea is to reduce a
well-known NP-complete integer partition problem to the EDM completion problem
for m 5 1 [7, 11, 16].

Given positive integers a , . . . , a , decide whether or not there exists a certain1 n

subset S ,N 5 h1, . . . , nj such that o a 5o a . Let us consider a partiali[S i i[⁄ S i
n3nmatrix D [R with the entries d 5 d 5 a for i [N (the subscript n 1 1i,i11 i11,i i

here and in the following lines is regarded as 1). We want to know whether or not
there exists a realization X 5 hx u i [Nj,R of the matrix D such that ux 2 x u5i i11 i

:a for all i [N. Setting the set S 5 hi u a 5 x 2 x j, then the set X is a realizationi i i11 i

of the matrix D if and only if o a 5o a . This indicates that the EDMi[S i i[N \S i

completion problem in R is strongly NP-complete.
Next, we give an approach to decide if the above matrix D has a realization in

2R . Without loss of generality, let n > 2. Denote A 5o a for all k [N. Letk i<k i
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k*5maxh0, k u A < A /2j. If k*5 0, or k*5 n 2 1 but A , A /2, then there isk n n21 n

not any realization of the matrix D since k*5 0 (or k*5 n 2 1 but A , A /2)n21 n

indicates that A 5 a . A /2, i.e., a .o a (or o a , a ), which is a1 1 n 1 i.1 i i<n21 i n

contradiction with the property of the triangle inequality of the Euclidean distance. It
is clear that there is a realization of the matrix D if A 5 A /2 for k*> 1. Whenk* n

333ˆ1< k*, n 2 1 and A , A /2. Define a symmetric matrix D [R such thatk* n

d̂ 5 0 , i 5 1, 2, 3 ,ii

d̂ 5 A ,12 k*

d̂ 5 a ,23 k*11

d̂ 5 A 2 A .13 n k*11

2ˆThere exists a realization of the matrix D in R , from which a realization of the
matrix D can be easily obtained.

From the above description, we know that the exact complexity status of the
general EDM completion problem remains an open problem. But there exists a
special class of the EDM completion problems, whose graphic structure corre-
sponding to the specified entries is chordal, that can be solved in polynomial time.
There also exist some efficient algorithms to test if the corresponding graph has no
K minor, or can be obtained by means of clique sums from chordal graphs and4

graphs with no K minor (see [16] and some references therein).4

4.2. PROPERTIES FOR THE UNIQUE AND RIGID CONFORMATION

n3nGiven a partial symmetric matrix D [R , a graph G 5 (V , E) (written by G, forD n

short) is called the associated graph with the partial matrix D if it is on the vertex
set V 5 h1, . . . , nj together with the edge set E, and an edge (i, j)[E for i, j [V ifn n

and only if the entry d is specified. For the molecular problem with completeij

inter-atomic distances (i.e., the Euclidean matrix D [EDM ), the paper [8] gives an

linear time algorithm to solve it, while the previous approaches rely on decomposing
2a Euclidean distance matrix or minimizing an error function and require O(n ) or

3O(n ) floating point operations. In this case, the associated graph with D is a
complete graph and its realization is located in the three-dimensional space.

Based on the approaches for determining the location of a point in Section 3, we
can obtain some properties about the minimal number of non-diagonal entries that
needs to be specified in a partial Euclidean distance matrix for the EDM completion
problem in order to assure the uniqueness or the rigidity of conformation. Note that
similar properties can also be obtained for the PSD completion problem.

Usually, the results obtained by graph theory methods are very general for the
EDM completion problem. In fact, the uniqueness and the rigidity of conformation
for a partial Euclidean distance matrix are related closely to not only the topology
structure in the associated graph, but also the numerical relationship among the
specified entries of the matrix. The following results come from the exploration of
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the numerical relationship among the specified entries of a partial Euclidean distance
matrix.

n3nTHEOREM 4.1. Given a symmetric matrix D [R with zero-diagonal and
positive non-diagonal entries, where n . 1, then the following conclusions hold:
(i) In order to decide whether or not the matrix D is a Euclidean distance matrix,

3the number of arithmetic operations needed is no more than O(n ). In
particular, if D [EDM , then the number of arithmetic operations needed ton

2find a realization of the matrix D is O(nk ), where k is the minimal dimension
number of a linear manifold in which a realization of the matrix D is located.

(ii) If D [EDM , then all of its realizations have the same conformation.n

Proof. (i) There are at least two methods that can be used to show the following
assertion:

The number of arithmetic operations, which is needed to decide whether or not
3D [EDM is no more than O(n ).n

One method is based on the covariance mapping (1) and the property (3). Note that
3computing the singular values of an n 3 n matrix can be done in at most O(n )

arithmetic operations [10]. By using the method of the matrix singular value
3decomposition, we can get a realization of the matrix D at most O(n ) arithmetic

operations if D [EDM or claim that D [⁄ EDM .n n

Now, we present another point of view to show the above assertion. A similar
idea for the molecular problem appears in [8]. From this viewpoint, if D [EDMn

and the dimension of a realization of D is bounded, then a linear time algorithm can
be derived easily to find a realization of the matrix D. In addition, we can get even

3better result than O(n ) for the problem of deciding whether or not D [EDM (seen

Remark 4.1 below).
Based on Theorem 3.3, suppose that we have obtained two sets: one is a

referential coordinate set X 5 hx , x , . . . , x j such that, for l 5 0, 1, . . . , j, the lastj i i i0 1 j

j 2 l entries of the vector x are zero; the other is Y 5 hy , . . . , y j (Y may bei q p p ql 1 q

empty set at a certain stage), where each y belongs to the linear manifold Sp Xt j

generated by the set X . A principal submatrix D of the matrix D, whichj j,q

corresponds to the index set hi , p u l 5 0, 1, . . . , j, t 5 1, . . . , qj, is an Euclideanl t
2distance matrix. Given any index s ± i , p , it is enough to perform O( j 1 qj)l t

arithmetic operations in order to decide which one of the following assertions holds:

(i) There exists a point x such that X < hx j becomes a new referentiali j ij11 j11

coordinate set, or a point x such that x [ S . Furthermore, the principalp p Xq11 q11 j

submatrix D (or D ) of the matrix D corresponding to the index setj11,q j,q11

hi , p u l 5 0, 1, . . . , j 1 1, t 5 1, . . . , qj (or hi , p u l 5 0, 1, . . . , j, t 5 1, . . . ,l t l t

q 1 1j) is a Euclidean distance matrix, where i 5 s (or p 5 s).j11 q11
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(ii) The principal submatrix D (or D ) of the matrix D corresponding to thej11,q j,q11

index set hi , p u l 5 0, 1, . . . , j 1 1, t 5 1, . . . , qj (or hi , p u l 5 0, 1, . . . , j, t 5l t l t

1, . . . , q 1 1j) is not a Euclidean distance matrix. Therefore, D is not a
Euclidean distance matrix.

3Since j < n 2 1 and q < n 2 2, it is easy to see that, using at most O(n ) arithmetic
operations, we can get a realization of the matrix D or claim that D [⁄ EDM .n

As for the second part of the conclusion (i), if D [EDM , the matrix D mustn
2have a realization, we only need O( j ) arithmetic operations in order to decide

which kind of points in the above first assertion exists. Let k denote the minimal
dimension number of a linear manifold in which a realization of the matrix D is
located. Then, the number of arithmetic operations needed to find a realization of the

3 2 2matrix D is just O(k 1 nk ), i.e., O(nk ).
(ii) If the matrix D [EDM , then, for any column index sets J of D, then

principal submatrix D corresponding to J must also be a Euclidean distance matrix.J

Given a realization X of D, without loss of generality, let the number of elements in
J is equal to k 1 1, where k is the dimension of a linear manifold in which the

:realization X is located. Hence, the subset X 5 hx u i [ Jj is a referential coordinateJ i

set. For any other realization Y of D, there must exist a subset Y ,Y whose0

Euclidean distance matrix is the same as D (a proper order of elements in Y mayJ 0

be considered in order to be consistent with D ). By Theorem 3.2, we have Y |X .J 0 J

Based on Theorem 3.1, the remaining points in X\X and Y\Y are uniquelyJ 0

determined by the distances from them to the points in X and Y , respectively.J 0

Therefore, Y |X. This indicates that all of realizations of the matrix D have the
same conformation. h

REMARK 4.1. From the proof of Theorem 4.1, if the dimension of a realization for
the matrix D (if it exists) is not greater than k, then we can decide whether or not

2D [EDM at most O(n k) arithmetic operations. In particular, for the molecularn

problem, given a complete NMR (exact) distance data matrix, the task terminates at
2most O(n ) arithmetic operations.

n3nDEFINITION 4.1. A partial Euclidean distance matrix D [R (n . 1) is said to
have the U-property in an m-dimensional linear manifold, if every non-diagonal
entry specified in the matrix D is not zero, and there exists a principal submatrix

(i ) n21 (i )sequence hD j of D such that the conformation consistent with D is unique ini51
(1) 232 (n21) (i )the same manifold, where D [R , D 5D and D (i , n 2 1) is a proper

( j )principal submatrix of D for j . i.

n3nTHEOREM 4.2. Given a partial Euclidean distance matrix D [R , let m be the
minimal dimension of a linear manifold in which the conformation consistent with D
can be realized and D has the U-property. Then, the minimal amount M(m, n) of
non-diagonal entries specified in D should satisfy
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L(m, n)<M(m, n)<U(m, n) , (9)

where n >m 1 1 and

L(m, n)5 2n 1 (m 1 1)(m 2 4) /2 , (10)

U(m, n)5 (m 1 1)n 2 (m 1 1)(m 1 2) /2 . (11)

Proof. First, we prove by induction that the conclusion holds when m 5 n 2 1. In
this case, we have L(n 2 1, n)5U(n 2 1, n)5 n(n 2 1) /2. We only need to prove
M(n 2 1, n)5 n(n 2 1) /2. It is clear that, for n 5 2, 3, the conclusion holds.

Suppose that the conclusion holds for the case n 5 k, i.e., the minimal amount
M(k 2 1, k) of non-diagonal entries specified in a k 3 k Euclidean distance matrix is
equal to k(k 2 1) /2 in order to assure the uniqueness of the conformation, where the
dimension of the conformation is equal to k 2 1. When n 5 k 1 1, if the conforma-
tion consistent with a partial (k 1 1)3 (k 1 1) Euclidean distance matrix D is unique
and has dimension k, then, based on Theorem 3.2 and 3.3, the conformation
consistent with the upper left k 3 k submatrix D of the matrix D must be unique0

and has the dimension k 2 1. By the induction hypothesis, the minimal amount
M(k 2 1, k) of non-diagonal entries specified in D is equal to k(k 2 1) /2. Denote a0

realization of the matrix D by X 5 hx u i 5 0, 1, . . . , k 2 1j. Using Theorem 3.30 0 i

again, we know that the entries hd u i 5 0, 1, . . . , k 2 1j of the matrix D shouldk11,i11

be specified properly in order to assure that the conformation consistent with D is
unique and has dimension k. Hence, the minimal amount M(k, k 1 1) of non-
diagonal entries specified in D is equal to M(k 2 1, k)1 k 5 k(k 1 1) /2. That is, the
conclusion holds when n 5 k 1 1.

Next, we prove the conclusion holds for the general m and n. Given any
realization X 5 hx , x , . . . , x j of the matrix D in a certain m-dimensional linear0 1 n21

manifold, which corresponds to the unique conformation. Since D has the U-
(i ) n21property, there exists a principal submatrix sequence hD j of D such that eachi51

(i )D corresponds to a unique conformation. Without loss of generality, suppose that
(k)X*5 hx , x , . . . , x j is a realization of D that includes a referential coordinate set0 1 k

in the above m-dimensional linear manifold and hx j<X* corresponds to thek11
(k11)matrix D . It is clear that k >m. Based on the set X*, Theorem 3.1 and Theorem

3.3, the point x is determined uniquely if and only if the following twok11

conditions hold simultaneously:

(i) The distances between x and each point in a certain referential subsetk11

hx , . . . , x j,X* are given, that is, the corresponding entries in D arei i1 j

specified.
(ii) The point x belongs to the linear manifold generated by the above setk11

hx , . . . , x j.i i1 j

Since the conformation is unique, we have 2< j <m 1 1. This indicates that the
minimal number M(m, n) of non-diagonal entries specified in D should satisfy
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M(m, n)>M(m, k 1 1)1 2(n 2 k 2 1) ,

M(m, n)<M(m, k 1 1)1 (m 1 1)(n 2 k 2 1) .

If the set X*\hx j also includes an m-dimensional referential coordinate set, thenk

we can deal with X*\hx j similarly. Now, suppose that the conformation corre-k

sponding to X*\hx j has dimension m 2 1 and is unique. In order to assure thek

uniqueness of the conformation associated with D, by Theorem 3.3, the minimal
amount of non-diagonal entries specified and related to x in D should be equal tok

m. Hence, we have M(m, k 1 1)5M(m 2 1, k)1m. By induction, we have

M(m 2 1, k)> L(m 2 1, k)5 2k 1m(m 2 5) /2 ,

M(m 2 1, k)<U(m 2 1, k)5mk 2m(m 1 1) /2 .

Therefore, we obtain

M(m, n)> 2k 1m(m 2 5) /21m 1 2(n 2 k 2 1)

5L(m, n) ,

M(m, n)<mk 2m(m 1 1) /21m 1 (m 1 1)(n 2 k 2 1)

<U(m, n) , (using the fact k >m)

where L(m, n) and U(m, n) are defined as (10) and (11), respectively. h

REMARK 4.2. For the molecular problem, if n atoms has a unique two-dimensional
conformation and their partial Euclidean distance matrix has the U-property, then
the minimal amount of the specified distances satisfies 2n 2 3<M(m, n)< 3n 2 6,
where n > 3; if these atoms has a unique three-dimensional conformation and the
corresponding distance matrix has the U-property, then the minimal amount of the
specified distances satisfies 2n 2 2<M(m, n)< 4n 2 10, where n > 4.

REMARK 4.3. The result in Theorem 4.2 is just a necessary condition for the
uniqueness of the conformation related to a partial Euclidean distance matrix which
has the U-property. Given a certain number M of the specified entries, the entries
specified must have a certain graphic structure and satisfy certain numerical
relations in order to assure the unique conformation.

A conformation is said to be rigid if it can not be continuously deformed while
still satisfying the distance constraints specified; otherwise, it is said to be flexible.
Obviously, the existence of a rigid conformation corresponding to a partial
Euclidean distance matrix does not imply the existence of the unique conformation,
but the uniqueness of the conformation implies the rigidity. Furthermore, the rigidity
of the conformation is related closely to the dimension of the linear manifold in
which the conformation is realized. For example, a rigid conformation in the
two-dimensional plane may not be rigid in the three-dimensional space. Under the
assumption of the existence of the rigid conformation, by using the similar
approaches as above, we can prove the following theorem about the minimal amount
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of non-diagonal entries specified in a partial Euclidean distance matrix, whose proof
is omitted.

n3nDEFINITION 4.2. A partial Euclidean distance matrix D [R (n . 1) is said to
have the R-property in an m-dimensional linear manifold, if every non-diagonal
entry specified in the matrix D is not zero, and there exists a principal submatrix

(i ) n21 (i )sequence hD j of D such that the conformation consistent with D is rigid ini51
(1) 232 (n21) (i )the same manifold, where D [R , D 5D and D (i , n 2 1) is a proper

( j )principal submatrix of D for j . i.

n3nTHEOREM 4.3. Given a partial Euclidean distance matrix D [R , let m be the
minimal dimension of a linear manifold in which the conformation consistent with D

˜can be realized and D has the R-property. Then, the minimal amount M(m, n) of
non-diagonal entries specified in D should satisfy

˜ ˜ ˜L(m, n)<M(m, n)<U(m, n) , (12)

where n >m 1 1 and

n 2 1 , if m 5 1 ,
L̃(m, n)5 (13)H2n 1 (m 1 1)(m 2 4) /2 , if m > 2 ,

n 2 1 , if m 5 1 ,
Ũ(m, n)5 (14)Hmn 2m(m 1 1) /2 , if m > 2 .

Finally, based on Theorem 4.2 and the covariance mapping defined in (1), we
give a corollary about the unique completeness of a partial correlation matrix, whose
proof is easily obtained and is omitted.

n3nCOROLLARY 4.1. Given a partial correlation matrix P [R , where n . 1,
suppose that every non-diagonal entry specified in the matrix P is not one, and the
matrix P can be completed uniquely. If the corresponding partial Euclidean distance
matrix of P under the covariance mapping (1) can be realized in a linear manifold
with the minimal dimension m (n >m) and have the U-property, then, the minimal
amount of non-diagonal entries specified in P should be equal to M(m, n 1 1)2 n,
where the function M satisfies (9)–(11).

5. Concluding remarks

The Euclidean distance matrix (EDM) completion problem and positive semidefinite
(PSD) matrix completion problem are considered in this paper. Approaches to
determine the location of a point in a linear manifold are studied, which are based
on the distances from the point to other points in a referential coordinate set. The
location of a point (if it exists) in a linear manifold is independent of the coordinate
system, and is only related to a certain referential coordinate set and the corre-
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sponding distances. Sufficient and necessary conditions for the existence of such a
point are presented. An interesting phenomenon about the complexity of the EDM
completion problem is described. Some properties about the uniqueness and rigidity
of conformation, which are related to minimal amount of non-diagonal entries
specified in a partial Euclidean distance matrix (or a partial PSD matrix), are also
presented. Based on our results, we note that the difficulty of the EDM and PSD
completion problems arises from data incompleteness, or from uncertainties between
the graphic structure and numerical assignment about the non-diagonal entries
specified in a partial EDM and PSD matrix, respectively.

Acknowledgements

The research of the first two authors was supported by the China Scholarship
Council while the authors visited the Department of Industrial and Systems
Engineering, University of Florida, Gainesville, USA. The research of the first
author was also partially supported by Scientific Foundation of Tsinghua University
under Grants 032701031 and 091101020. The research of the third author was
partially supported by NSF under Grants DBI 9808210 and EIA 9872509.

References

1. Andrilli, S. and Hecker, D. (1993), Elementary Linear Algebra, PWS-Kent Publishing
Company, Boston, MA.

2. Bakonyi, M. and Johnson, C.R. (1995), The Euclidean distance matrix completion problem.
SIAM Journal on Matrix Analysis and Applications 16(2), 646–654.

3. Blaney, J.M. and Dixon, J.S. (1994), Distance geometry in molecular modeling. In:
Lipkowitz, K.B. and Boyd, D.B. (eds.), Reviews in Computational Chemistry,VCH Publishers,
New York, Vol. 5, pp. 299–335.

4. Blumenthal, C.M. (1970), Theory and Applications of Distance Geometry, Chelsea Publishing
Co., Bronx, New York.

5. Borg, I. and Groenen, P. (1997), Modern Multidimensional Scaling: Theory and Applications,
Springer, New York.

¨6. Brunger, A.T. and Nilges, M. (1993), Computational challenges for macromolecular structure
determination by X-ray crystallography and solution NMR-spectroscopy, Quarterly Reviews
of Biophysics 26, 49–125.

7. Crippen, G.M. and Havel, T.F. (1988), Distance Geometry and Molecular Conformation,
Research Studies Press, England; John Wiley and Sons, New York.

8. Dong, Q.F. and Wu, Z.J. (2001), A linear-time algorithm for solving the molecular distance
geometry problem with exact inter-atomic distances, to appear in Journal of Global
Optimization.

9. Glunt, W., Hayden, T.L. and Raydan, M. (1993), Molecular conformations from distance
matrices. Journal of Computational Chemistry 14(1), 114–120.

10. Golub, G.H. and Van Loan, C.F. (1989), Matrix Computations, 2nd ed. Johns Hopkins
University Press, Baltimore, MD.



SOME PROPERTIES FOR THE EUCLIDEAN DISTANCE MATRIX 21

11. Hendrickson, B. (1990), The Molecular Problem: Determining Conformation from Pairwise
Distances, Ph.D. thesis, Department of Computer Science, Cornell University.

12. Hendrickson, B. (1995), The molecule problem: exploiting structure in global optimization.
SIAM Journal of Optimization 5(4), 835–857.

13. Johnson, C.R. (1990), Matrix completion problems: a survey. In: Johnson, C.R. (ed.), Matrix
Theory and Applications, American Mathematical Society, Providence, RI, pp. 171–198.

14. Johnson, C.R. and Tarazaga, P. (1995), Connections between the real positive semidefinite
and distance matrix completion problems. Linear Algebra and Its Applications 223/224,
375–391.

15. Laurent, M. (1998), A connection between positive semidefinite and Euclidean distance
matrix completion problems. Linear Algebra and Its Applications 273, 9–22.

16. Laurent, M. (1998), A tour d’horizon on positive semidefinite and Euclidean distance matrix
completion problems. In: Pardalos, P.M. and Wolkowitz, H. (eds.), Topics in Semidefinite and
Interior-Point Methods, Fields Institute Communications, Vol. 18, American Mathematical
Society, pp. 51–76.

´17. More, J.J. and Wu, Z.J. (1997), Global continuation for distance geometry problems. SIAM
Journal on Optimization 7(3), 814–836.

18. Pardalos, P.M. and Liu, X. (1998), A tabu based pattern search method for the distance
geometry problem. In: Giannessi, F., Komlosi, S. and Rapcsak, T. (eds.), New Trends in
Mathematical Programming, Kluwer Academic Publishers, Boston, MA, pp. 223–234.

19. Saxe, J.B. (1979), Embeddability of weighted graphs in k-space is strongly NP-hard.
Proceedings of the 17th Allerton Conference in Communications, Control and Computing, pp.
480–489.

20. Schoenberg, I.J. (1938), Metric spaces and positive definite functions. Transactions of the
American Mathematical Society 44, 522–536.

21. Wells, C., Glunt, W. and Hayden, T.L. (1994), Searching conformational space with the
spectral distance geometry algorithm. Journal of Molecular Structure 308, 263–271.

22. Yajima, Y. (2001), Positive semidefinite relaxations for distance geometry problems, manu-
script.


